
Mr. Mohan S.Deshmukh et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 5, (Part -7) May 2016, pp.20-26

 www.ijera.com 20 | P a g e

Efficient load rebalancing for distributed file system in Clouds

Mr. Mohan S. Deshmukh*, Prof. S.A.Itkar**

*(Department Of Computer Engineering. Pune University, ME II Year P.E.S’s Modern College Of Engineering)

** (Department Of Computer Engineering, Pune University, Assistant Professor P.E.S’s Modern College Of

ABSTRACT
Cloud computing is an upcoming era in software industry. It’s a very vast and developing technology.

Distributed file systems play an important role in cloud computing applications based on map reduce

techniques. While making use of distributed file systems for cloud computing, nodes serves computing and

storage functions at the same time. Given file is divided into small parts to use map reduce algorithms in

parallel. But the problem lies here since in cloud computing nodes may be added, deleted or modified any time

and also operations on files may be done dynamically. This causes the unequal load distribution of load among

the nodes which leads to load imbalance problem in distributed file system. Newly developed distributed file

system mostly depends upon central node for load distribution but this method is not helpful in large-scale and

where chances of failure are more. Use of central node for load distribution creates a problem of single point

dependency and chances of performance of bottleneck are more. As well as issues like movement cost and

network traffic caused due to migration of nodes and file chunks need to be resolved. So we are proposing

algorithm which will overcome all these problems and helps to achieve uniform load distribution efficiently. To

verify the feasibility and efficiency of our algorithm we will be using simulation setup and compare our

algorithm with existing techniques for the factors like load imbalance factor, movement cost and network traffic.

Keywords - Clouds, Distributed File system, Load balance, Movement cost, Network traffic

I. INTRODUCTION
Cloud computing is advanced technology in which

dynamic allocation of resources on-requirement

basis is carried out without any specific procedure.

Cloud computing is scalable since it uses key

technologies like MapReduce algorithms [4],

distributed file systems [2], [8], virtualization etc.

Distributed file systems are usually used for cloud

computing, which are based on MapReduce

technology. In this file system, files are divided

into number of small parts and these parts are

allocated to various distinct nodes. Nodes serve

both storage and computing functions. For

example, consider an application where counting a

number of distinct names of the persons in a given

country. Then application will find out distinct

names of the person and also the frequency of each

name. In this type of application, a cloud partitions

the file into fixed size parts and then assigns them

to different

nodes in the system. Then each node will

perform the counting task on part of file stored in

it. But as discussed the nodes may be upgraded,

deleted or added dynamically and also the file

chunks. This leads to load imbalance problem.

Uniform load distribution is challenging task in

cloud computing. In a load balanced environment

performs of the system will improve and we can

achieve high efficiency.

For load balancing mostly used approach is central

node technique [3]. In this technique dependency is

on central node for managing metadata information

of the file systems for balancing loads of storage

nodes. This approach is useful to simplify the

design and implementation of the distributed file

system [2]. But the main concern for this approach

is scalability of cloud computing system. As the

number of nodes, number of files and users

accessing the system increases central load fails

due to overload and performance bottleneck

problems. New developments were carried out to

solve these problems in central node but those

techniques do not serve the purpose successfully.

For example, in Hadoop DFS [8] federation

architecture with multiple namenodes for managing

metadata information is used. In this system

manual and static portioning is carried out [9]. But

since the load of namenodes may change over a

period of time and there is no provision for

migration of load for load balancing, any

namenode with excess load may become a

bottleneck and node without any load will be ideal

at the same time. So this technique also fails to give

uniformly load balance system.

In this paper, we emphasizes on studying

load rebalance problem in distributed file systems

which are large-scale, dynamic and data intensive.

This type of large-scale file systems has hundreds

or thousands of nodes. Our main objective is to

RESEARCH ARTICLE OPEN ACCESS

Mr. Mohan S.Deshmukh et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 5, (Part -7) May 2016, pp.20-26

 www.ijera.com 21 | P a g e

design a system which will have uniform load

distribution as far as possible. We also focus on

movement cost i.e. the network traffic caused by

nodes in interest of balancing the loads and also

improving the capacity of nodes which will

enhance the performance of the overall system. We

mainly suggest the offloading the load rebalancing

work to storage nodes by availing the storage nodes

to balance their loads spontaneously. For this we

structure the nodes in DHT network format.

Assignment of unique chunk handle for each file

chunk (part) is carried out. DHTs will allow nodes

to self-organize and repair by offering lookup

function in node.

In this paper will cover the following

points. 1st will go through the load rebalancing

problem, then our proposed algorithm for load

rebalancing and then evaluation of algorithm

through computer simulation and assessment of

simulation result. Then using cluster environment

performance measurement of our proposal.

II. WHAT IS LOAD REBALANCING

PROBLEM?
1. Consider a large-scale distributed file system

[8] which consists of set of chunk servers V in

a cloud and cardinality of V is n. n can be ten

thousand or more. Files will be stored on n

chunk servers. Let’s say set of files as F. each

file f belongs to F is partitioned into number of

parts and fixed-size chunks denoted by Cf

.Second load of chunk servers is directly

proportional to number of chunks hosted by

the server. Chunk servers may be replaced,

added or upgraded in the system and also the

files F may be appended, created or deleted at

any time [2]. This in turn affects the load

balancing of system and results in non-uniform

load distribution in the system. Figure 1

illustrates an example of load rebalancing

problem. Assumption here is that chunk

servers are homogenous and have same

capacity.

(1) (2)

(3) (4)

Fig. 1 example of load rebalancing problem, (1)

initial load distribution, (2) files f2 andf5 are

deleted (3) f6 is appended and (4) node 4 joins. The

nodes 1, 2, 3 are in load imbalanced state.

We will focus on designing a load

rebalancing algorithm to reallocate the chunks to

achieve the uniform load distribution to the system

as much as possible. We will also try to reduce the

movement cost i.e. the migration of chunks caused

for balancing loads of chunkservers [3]. Let A be

the ideal number of chunks that any chunkserver i

belongs to V is required to manage in load

balanced state,

Then we aim to minimize the load

imbalance factor in each chunkserver i as follows:

‖Wi- .A‖

(2) Where Wi is load of node and denotes the

absolute value function

The load rebalancing problem is NP- hard.

1st for simplicity we will assume a homogenous

environment, where migration of file chunk

between any two nodes requires a unit movement

cost and each chunk server has the identical storage

capacity. But for practical considerations we will

have to deal with nodes with heterogeneous

capacity and different movement costs.

III. SYSTEM ARCHITECTURE

Organization of chunk servers as DHT network i.e.

implementation of each chunk server using DHT

protocols Chord and Pastry. Partitioning of files

into number of fixed-size chunks, and each chunk

will have a unique chunk identifier known as chunk

handle (SHA1). This hash function returns a unique

chunk identifier for a given file’s path name string

and chunk index. For example, the identifiers of 1st

and 10th chunks of file “/user/sap/tmp/Y.log” are

respectively SHA1 (/user/sap/tmp/Y.log,0)and

SHA1 (/user/sap/tmp/Y.log, 10). Each chunk server

with unique ID will represented as 1, 2, 3…n.

Successor of chunk server will be i+1 and

successor of chunk server n as chunk server 1. To

discover a file chunk, the DHT lookup operation is

performed.

Mr. Mohan S.Deshmukh et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 5, (Part -7) May 2016, pp.20-26

 www.ijera.com 22 | P a g e

3.1 Adavantages Of Using Dhts

By making use of DHTs, it guarantees that

if any node leaves, then its locally hosted chunks

are reliably migrates to its successor and if node

joins, then it allocates the chunks who’s IDs are

immediately precede the joining node from its

successor [3]. Dependency of our proposal is on

node arrival and departure operations to manage

file chunks among the nodes.

Lookup latency delays can be reduced by

performing discovery of file chunks in parallel. To

further reduce latency delay we can use of DHTs

that offers one-hop lookup delay (Amazon’s

dynamo). We can integrate our proposal to existing

large scale distributed file systems as well. Our

proposal works perfect with both uniform and non-

uniform distribution of nodes & file chunks [10]

[11].

3.2 Load Rebalacning Algorithm:

A given system is said to be in load

balanced state if each chunk server hosts not more

than A chunks. Here, each chunk server 1st

estimates whether it is under loaded or overloaded

without global knowledge. If a given node i departs

and rejoins as successor of another node j, then we

represent node I as j+1, node j’ s original successor

as node j+2, the successor of node j’ s original

successor as node j+3, and so on. If any node in the

system is light node then it search for heavy node

and takes over at most A chunks from the heavy

node.

Table 1 : The Symbols Used In Algorithm

Symbol Description
| · | set cardinality
||·|| absolute value function
V set of chunkservers (storage nodes)
n |V|
m number of file chunks stored in V

O set of heavy (overloaded) nodes

U set of light (underloaded) nodes
A ideal number of file chunks hosted by a

node

Ā i
estimation of A by node i

L i
load (number of file chunks) stored in node

i ∈ V
V” vector containing randomly selected nodes
nv

number of vectors collected and

maintained by a node
s |V|

Δ L and

Δ U

parameters identifying light and heavy

nodes


 i


 approximated by node i

Algorithm 1: SEEK(V,ΔL,ΔU): a light node i

seeks

An overloaded node j

Input: vector V = {s samples}, Δ L and Δ U

Output: an overloaded node, j

1. Ā i ← an 1 estimate for A based on { Ā
j

 : j

∈ V};

2. if L i < (1 − Δ L) Ā i then

3. V ←V ∪{i};

4. sort V according to L j (∀ j ∈ V) in ascending

order;

5. k ← i’s position in the ordered set V;

6. find a smallest subset P ⊂ V such that

(i) L j > (1 + Δ U) Ā
j
, ∀ j ∈ P, and

(ii)  Pj jL(Ā
j

) ≥ k Ā i

7. j ← the least loaded node in P;

 return j;

Algorithm 2: MIGRATE(i, j): a light node i

requests chunks from an overloaded node j

Input: a light node i and an overloaded node j

1. if L j > (1 + Δ U) _ 1 Ā
j

 and j is willing to

share its load with i then

2. i migrates its locally hosted chunks to i + 1;

3. i leaves the system;

4. i rejoins the system as j’s successor by having

5. i ← j + 1;

6. t ← Ā i ;

7. if t >(L j − (1 + Δ U) Ā i) then

t ← L j − (1 + Δ U) _ Ā i ;

8. i allocates t chunks with consecutive IDs from

j;

9. j removes the chunks allocated to i and

renames its ID

 In response to the remaining chunks it

manages;

Algorithm 3: MIGRATELOCALITYAWARE (i,

V”): a light

Node i joins as a successor of a heavy node j that is

physically closest to i

Input: a light node i and V = {V1, V2, . . . , V nv

}

1. C ← ∅;

2. for k = 1 to nv do

3. C ← C ∪ SEEK(V k);

4. j ← the node in C physically closest to i;

5. MIGRATE(i, j);

Algorithm 4: SEEKFORHETEROGENEITY (V,

Δ L and Δ U): a light node i seeks an overloaded

node j in an heterogeneous environment where

Mr. Mohan S.Deshmukh et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 5, (Part -7) May 2016, pp.20-26

 www.ijera.com 23 | P a g e

nodes have different capacities (here,  i denotes

 approximated by node i)

In our proposal 1st will propose algorithm

in which nodes will have global knowledge of the

system & then in 2nd algorithm nodes without

global knowledge of the system. With the help of

global knowledge if node find that it is light node

then node leaves the system by migrating its locally

hosted chunks to its successor i+1 & then rejoins

quickly to as the successor of heavy node. For

relieving the load of heavy node, light node send

requests as min {Lj - A, A} chunks from heavy

node. That is light node request the exceeded load

from heavy node. After this if heavy node still

remains as heavy node then another light node

performs the same procedure. This process repeats

until the heaviest node doesn’t remains as heavy

node. This process is carried for all heavy nodes

and light nodes for load balancing.

This algorithm in this way helps to

achieve the load balanced state as quick as possible

and also helps to reduce the movement cost since

only the light nodes in the system migrates towards

heavy node.

We can reduce the time complexity of this

algorithm, if every light node knows to which

heavy node it needs to request beforehand and then

parallel load balancing can be done. For this 1st we

sort out the top light nodes and top heavy nodes in

the system, mapping of each light node to heavy

node is done. In this way all light nodes can

concurrently request chunks from heavy node

which will help to reduce the latency of sequential

algorithm to achieve the load-balanced state.

It is not possible to have global knowledge

system in a very large-scale distributed file system

so we propose algorithm which will work in

distributed manner without global knowledge.

Then we try to improve our proposal by taking

advantage of physical network locality to reduce

network traffic. We have to also consider the nodes

with heterogeneous capacity & also the high file

availability is asked from large-scale and dynamic

distributed storage systems where chances of

failure are more. To tackle this issue we try to

maintain the replica of each file chunk.

As discussed earlier, we try to propose a

algorithm where nodes will not have a global

knowledge but it’s a very challenging task, so in

our system we try to solve this problem by creating

a group of nodes by randomly selecting nodes. And

then each node contacts the number of nodes in

group & builds a vector denoted by V. vector

consists of entries, & each entry consists of ID,

network address & load statues of nodes in that

group. Using gossip-based protocol, each node

carries out exchange with its neighbors until its

vector has entries [24]. Then it calculates average

load of each node and consider it as estimation.

Then if node i is light node then it

searches for heavy node for requesting chunks.

Then node i performs sorting of nodes including

itself in its vector and finds its position in sorted

list. Node i find out the overloaded nodes such that

it exceeds the maximum load limit or equal to

maximum load limit. Node i then request the

chunks from heavy node.

But here there might be a case where

different nodes try to share the load of node j, for

this node j offloads its load to randomly selected

node. Also it is possible that number of heavy

nodes selects same node to share their loads. In this

case light node randomly picks up heavy nodes for

reallocation.

(1) (2)

(3) (4)

(5)

Fig. 2. An example illustrating our algorithm,

where (1) the initial loads of chunkservers N1;N2; .

. .;N10, Fig.2.2 N1 creates a sample of the loads of

N1, N3, N6, N7, and N9 for performing the load

rebalancing algorithm, Fig.2.3 N1 leaves and sheds

its loads to its successor N2, and then rejoins as

N9’s successor by allocating AeN1 chunks (the

Mr. Mohan S.Deshmukh et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 5, (Part -7) May 2016, pp.20-26

 www.ijera.com 24 | P a g e

ideal number of chunks N1 estimates to manage)

from N9, Fig.2.4 N4 collects its sample set

fN3;N4;N5;N6;N7g, and Fig.2.5 N4 departs and

shifts its load to N5, then allocates exceeded

chunks from N6 ad rejoins as successor to N6.

3.3 Use Of Physical Network Locality:

DHT network can be useful to find out

logical proximity. But it’s not useful to find out

physical location using logical proximity in

practical. That is a message travelling between two

neighbors in DHT network may travel a long

physical distance through various physical network

links. So in this case heavy migration will require

for sending message which will induce heavy

network traffic and consumption of network

resources.

To overcome this problem, instead of

creating one vector per algorithmic round, each

light node creates NV vectors using the same

procedure. Then from NV vectors, node i search

NV heavy nodes and then selects physically close

heavy node based on message round-trip delay.

For algorithm 3 demonstration consider the above

example. Let NV=2. Create two sample sets

v1={N1,N3,N6,N7,N9} and

v2={N1,N4,N5,N6,N8}. N1 identifies Node N9

and Node N8 in v1 and v2 respectively. Suppose

N8 is closer than N9 then node i will join as a

successor of N8 & also node i will offload its load

to its successor. Further to reduce network traffic

we can initialize DHT network such that every two

nodes with adjacent

IDs are geometrically close. For this we

use space filling curve, which visits each IP address

and assigns a unique ID to each address such that

geometrically close IP addresses are assigned with

numerically close IDs. For invoking the IDs, we

can use IP address as input to space filling curve.

3.4 Use Of Node Heterogeneity:

Nodes in the system may be having

different capacities in terms of number of file

chunks it can accommodate. Consider the

capacities of nodes as (C1, C2, C3……, n). We

modify our basic algorithm in as each node i

approximates the ideal hosting of file chunks in

load balanced state as follows:

Load per unit capacity is which a node should

manage in load balanced state and which a node

should manage in load balanced state and

m is number of file chunks.

As we know load of node is directionally

proportional to the number of file chunks the node

has stored [8]. So we have taken into consideration

this while designing. To find out average load per

unit capacity we will use gossip-based aggregation

protocol [20] [21]. Our basic algorithm is then

modified taking into consideration of node

heterogeneity.

IV. IMPLEMENTATION
For implementation of our algorithm we

will use computer simulations. For this we will use

chord and gossip-based aggregation protocols [20].

The number of nodes in the system will be n=1,000

and number of file chunks m=10000. Number of

chunks hosted by a node will make use of

geometric distribution. Figures will elaborate this

concept. We have use standalone load balancing

server which will acquire global knowledge of the

file chunks in the system from the namenode.

These namenodes manages the metadata of

complete file system. Now by making use of this

global knowledge, it partitions the nodes as

overloaded nodes and light nodes, then balancer

will randomly pick up the light node and heavy

node and balances their nodes according to our

algorithm. The reallocation will end when there is

no pair of light and heavy node found by balancer.

As we have modified our algorithm to reduce

network traffic, load balancer will try to reallocate

loads of nodes in same rack 1st and if no node in

same rack is found by balancer then it will access

other new rack for reallocation.

4.1 Implementation Result
Implementation results will prove that our

approach is performs well than centralized

approach, since load balancer collects the

information from namenode. This is because each

node randomly selects other node without global

knowledge of the system. Our proposal is

distributed and it is not require gaining global

knowledge of the system.

Movement cost of our proposal will be

very low since we will make use physical network

locality. And making use of this information and

arrangement of nodes accordingly will help to

reduce migration of nodes and file chunks. Also in

our proposal only light nodes will offload its load

to successor to achieve load balanced state will be

low. Because the movement cost require for

reallocation of light nodes will be less.

Messages generated by our algorithm are

within the limits and are less as compared to other

approaches. This will result in less message

overload[24]. In our proposal we are depending on

a chord protocol. Number of operations required

for rejoining and departure in our algorithm are

Mr. Mohan S.Deshmukh et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 5, (Part -7) May 2016, pp.20-26

 www.ijera.com 25 | P a g e

considerably more than centralized approach but

less than other approaches.

As we have modified our algorithm for

making use of physical network locality, we have

found that our algorithm will work well in load

rebalancing task. Since in our algorithm we will

create groups of nodes with physically close to

each other and while reallocation we will make use

of this information, load balancer will 1st reallocate

the nodes from the same rack then if still require

then only access the other rack for load balancing

[27]. As mentioned by making use of chord ring all

adjacent nodes in the ring are physically close also.

This helps in achieving fast convergence of system

to uniform load balanced state with low network

traffic and less consumption of network resources.

Following figure will elaborate the concept of how

our algorithm will work

Shows the time elapsed of HDFS load balancer and

our proposal

1) Distribution of chunks for HDFS

2) Expected distribution of chunks for our

proposal

V. EXPERIMENTAL SETUP

For implementation we are using HDFS

0.21.0 & for assessment of implementation we are

using load balancer in HDFS.

For demonstration we will use small cluster

environment, which consists of a single dedicated

name node and 25 datanodes,

Software requirement: Ubuntu 10.10

Hardware requirement: Intel core 2 duo

E7400 processor, 3gb RAM (RAM size depends

upon number of file chunks to be processed)

For implementation, a number of clients

are established and these clients will issue request

to the namenode. Requests like create & delete

directories, in our proposal we will set up 6 clients

for generating requests. Further we will limit the

processor cycles available for namenode by

periodically varying maximum processor

utilization. When there will be lower processor

availability then less number of cycles will be

available for namenode to allocate to handle the

clients requests.

We will use maximum 256 chunks

scattered in the file system for connecting all nodes

with 100mbps network. For each execution of

algorithm we will calculate the time required to

complete load balancing, also for load balancer in

HDFS and our proposal. We will perform 20 runs

for a given processor utilization and calculate the

average time required for algorithm execution.

Random sampling of 10 nodes will be carried out.

VI. EXPECTED OUTPUT

Uniform load distribution among all nodes

in cloud.

Reduced movement cost.

Network traffic is reduced.

Mr. Mohan S.Deshmukh et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 5, (Part -7) May 2016, pp.20-26

 www.ijera.com 26 | P a g e

VII. CONCLUSION AND SUMMARY
Our proposed algorithm will prove as

efficient approach to tackle load rebalancing

problem for large-scale, dynamic distributed file

systems in clouds. Our proposal helps to achieve

the load balanced state and also reduces the

movement cost at far extend, by making a perfect

use of node heterogeneity and physical network

distribution. We will compare our proposal with

existing systems for better assessment of our

proposal, for this we will deal with heavy loaded

nodes. Our proposal has number of enhancements

than the centralized approach or typical distributed

approach which will result in high performance

load balancing technique.

For future work we can consider issues

which require in depth knowledge of issues like

metadata management, file consistency models and

replication strategies.

REFERENCES
[1]. Chung, H. Yi, Shen, Haiying, Chao, Y. Chang, ”Load

rebalancing for distributed file system in clouds” , IEEE

Trans, Software Engineering., volume 24 no. 5, May
2013.

[2]. S. Ghemawat, H. Gobioff, and S.-T. Leung, “The

Google File System,” Proc. 19th ACM Symp. O. S.
Principles, pp. 29-43, October 2003.

[3]. K. McKusick and S. Quinlan, “GFS: Evolution on Fast-

Forward,” Communication. ACM, volume 53, no. 3, pp.
42-49, January 2010.

[4]. J. Dean and S. Ghemawat, “MapReduce: Simplified

Data Processing on Large Clusters,” Proc. Sixth Symp.
O. S. Design and Implementation, pp. 137-150,

December 2004.

[5]. VMware, http://www.vmware.com/, 2012.
[6]. Hadoop Distributed File System,

http://hadoop.apache.org/ hdfs/, 2012.

[7]. HDFS Federation,
http://hadoop.apache.org/common/docs/r0.23.0/hadoop-

yarn/hadoop-yarn-site/Federation.html, 2012.

[8]. I.Stoica, R. Morris, D. Liben-Nowell, D.R. Karger,
M.F. Kaashoek, F. Dabek, H. Balakrishnan, “Chord: A

Scalable Peer-to-Peer Lookup Protocol for Internet
Applications,” IEEE/ACM Transactions. Networking,

volume 11, no. 1, pp. 17-21, February 2003.

[9]. A. Rowstron and P. Druschel, “Pastry: Scalable,
Distributed Object Location and Routing for Large-

Scale Peer-to-Peer Systems,” Proc. IFIP/ACM Int’l

Conf. Distributed Systems Platforms Heidelberg, pp.
161-172, November 2001.

[10]. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P.
Vosshall, and W. Vogels, “Dynamo: Amazon’s Highly

Available Key-Value Store,” Proc. 21st ACM Symp.

Operating Systems Principles, pp. 205-220, October

2007.

[11]. A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and

I. Stoica, “Load Balancing in Structured P2P Systems,”
Proc. Second Int’l Workshop Peer-to-Peer Systems, pp.

68-79, February 2003.

[12]. D. Karger and M. Ruhl, “Simple Efficient Load
Balancing Algorithms for P-to-P Systems,” Proc. 16th

ACM Symp. Parallel Algorithms and Architectures

(SPAA ’04), pp. 36-43, June 2004.
[13]. P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online

Balancing of Range-Partitioned Data with Applications

to Peer-to-Peer Systems,” Proc. 13th Int’l Conf. Very
Large Data Bases, pp. 444-455, September 2004.

[14]. J.W. Byers, J. Considine, and M. Mitzenmacher,

“Simple Load Balancing for Distributed Hash Tables,”
Proc. First Int’l Workshop Peer-to-Peer Systems, pp. 80-

87, February 2003.

[15]. Y. Zhu and Y. Hu, “Efficient, Proximity-Aware Load
Balancing for DHT-Based P2P Systems,” IEEE Trans.

Parallel and Distributed Systems, volume 16, no. 4, pp.

349-361, April 2005.
[16]. H. Shen and C.-Z. Xu, “Locality-Aware and Churn-

Resilient Load Balancing Algorithms in Structured P2P

Networks,” IEEE Trans. Parallel and Distributed
Systems, volume 18, no. 6, pp. 849-862, June 2007.

[17]. H.-C. Hsiao, H. Liao, S.-S. Chen, and K.-C. Huang,

“Load Balance with Imperfect Information in Structured
Peer-to-Peer Systems,” IEEE Trans. Parallel Distributed

Systems, volume 22, no. 4, pp. 634-649, April 2011.

[18]. M.R. Garey and D.S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman and Company, 1979.

[19]. D. Eastlake and P. Jones, “US Secure Hash Algorithm 1
(SHA1),” RFC 3174, September 2001.

[20]. M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-

Based Aggregation in Large Dynamic Networks,” ACM
Trans. Computer Systems, volume 23, no. 3, pp. 219-

252, August 2005.

[21]. M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M.
Kermarrec, and M.V. Steen, “Gossip-Based Peer

Sampling,” ACM Trans. Computer Systems, volume 25,

no. 3, August. 2007.
[22]. C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,

Y. Zhang , S. Lu, “BCube: A High Performance, Server-

Centric Network Architecture for Modular Data
Centers,” Proc. ACM SIGCOMM ’09, pp. 63-74,

August 2009.

[23]. H. Abu-Libdeh, P. Costa, A. Rowstorn, G. O.Shea, and
A. Donnelly, “Symbiotic Routing in Future Data

Centers,” Proc. ACM SIGCOMM 10, pp. 51-62,

August 2010.
[24]. S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp,

and I. Stoica, “Load Balancing in Dynamic Structured

P2P Systems,” Performance Evaluation, volume 63, pp.
217-240, March 2006.

